非接触能量和数据传输处理任务

此内容由供应商直接提交给本网站。

虽然机器人系统有时受自动化和驱动技术的限制限制,但是可以很容易地最小化这个问题。从单一来源的特定于应用程序自动化使机器构建器能够为客户开发新的商业有利的解决方案。为了证明,考虑使用非接触式能量和数据传输而不是固定布线运行和电缆载波的龙门机器人的情况。

龙门式机器人是一个久经考验的解决方案intralogistics material flows within a machine or application. They are commonly used to detect products automatically, grip them securely and quickly, and take them to their destination. This type of robot is useful in many industries, and can be used for a wide range of product sizes and weights, and distances to be covered. Oftentimes, the lengths of power and communication cables and cable carriers limit the flexibility and adaptability of an existing machine to a new production scenario. Adding contactless energy and data transfer opens up new production scenarios, and has largely consigned cables to the past.

Less noise, enhanced dynamics, greater flexibility
The illustrated solution demonstrates contactless energy and data transfer combined with intelligent software and reliable mechatronics to create a fully integrated solution. What immediately catches the eye about this gantry is the drive concept used to move the gantry robots on the rail: contactless energy transfer. As a result, multiple robots can move freely on the same horizontal stretch, greatly increasing the flexibility of this gantry robot application. This regularly leads to overlapping sections between robots– ultimately offering a great deal of freedom in terms of machine design and operations. Logistics processes of this kind would not be as easy to implement with cable carriers, because of the additional area that carriers use along the entire distance of the system. In addition, cable carriers generate noise, are subject to wear, increase inertia, and have an overall negative impact on both dynamics and energy efficiency due to the friction they generate. Another benefit of contactless energy and communication transfer is that there are no longer any restrictions regarding installation space, cable breakage or limited cycle rates – issues all associated with cable carriers and moving cables. The clever innovation is made possible by a contactless inductive energy transfer system, including a decentralized power supply module. Depending on the design, this module delivers a transmission power of between 5 and 11 Hp.

What is exciting about this logistics solution is that throughout the entire load cycle, the robot consumes less than 0.7 Hp via the pick-up – even though the horizontal axis alone requires more than 5 Hp of acceleration power during acceleration. The short-term energy requirements are met by the energy storage unit, a double-layer capacitor package that takes care of the primary energy supply to the robot with a DC link voltage of 100 V. The typical travel profiles of a gantry robot, which involve alternating acceleration and braking phases, led to the idea of retaining the regenerative energy generated during braking within the process instead of dissipating it via resistors. The energy storage unit absorbs this braking energy and additionally functions as a booster when the gantry's drives accelerate at 20 ft/s2. The design is so effective that the contactless energy transfer and storage solution only has to compensate for the system's mechanical efficiency losses, which amount to around 0.7 Hp. Unlike the familiar DC link connection of multi- axis applications, which is located in the central control cabinet, each unit is enabled to store energy independently. This makes it easy and convenient to scale this type of system.

Cable-free communication
The robot gantry's contactless energy transfer system, which eliminates the need for restrictive cables, also extends to the communication processes. In this context, an EtherCAT® data light barrier transfers the interpolated position setpoints from the central motion controller to the four servo inverters in the moving housing box at 1 ms intervals. A motion controller calculates the complex robot motion control – and can do so for up to four robots at once. Motion control involves performing calculations to prevent collisions and coordinating the robots to achieve a productive overall system. If a machine in a production network requires double the material flow output, the gantry system gives users the option to move a robot from another section on a flexible basis. Handling units that draw their power with cables, in contrast, are tied to their section. As a result, the associated resources become movable and systems as a whole are more flexible and productive. Entirely new machine concepts can be created based on this approach. The demands placed on communication are correspondingly high as well.

Optical real-time communication
The automation provider opted to use the real-time Ethernet protocol EtherCAT® in the gantry – once again dispensing with cables by implementing an optical connection to the mobile units. The drive data can be delivered to the robots via data light barriers. Having separate motion controllers in each robot is a thing of the past: one does the job for running the whole robotic system. With each cycle taking 1 ms, the optical system has practically no latency periods when transmitting the interpolated position setpoints to the inverters or feeding back the relevant actual values.

功能安全技术的通信以同样的方式运作。对于此应用,选择了所有机器人和整体机器的中央安全控制器。本安全控制器通过EtherCAT®使用EtherCAT®FSOE(通过EtherCAT失败)协议直接通过Ethercat®与Movi-C®自动化控制器进行通信。此设置使两个控制器能够轻松地共享数据,非常简化编程,并且由于其高信息密度提供了诊断和调试的优异条件。

Solutions in a nutshell
The seamless integration of the FSoE safety master and the EtherCAT® data light barrier are integrated into a comprehensive automation solution including motors, electronics and visualization. Clearly, working with a skilled automation provider can streamline the development process and the newest drive technology innovations and trends can be considered. In this context, standardized interfaces play just as important a role as prepared software modules or application-specific function modules.

公司在本文中
More in Supplier News