In 2020,Schneider Electric’s Lexington, Ky., facility—a 60-year-old brownfield facility where safety switches and circuit breakers are produced— was recognized as a “Lighthouse Factory” by the World Economic Forum (WEF), which, together withMcKinsey & Company2018年,创建了全球灯塔网络计划。“灯塔工厂”是有效使用行业4.0技术来推动数字化转型的公司。结果,这些公司被认为是其他人遵循的信标。
The Lexington factory’s digital energy management strategy leverages IIoT (Industrial Internet of Things) connectivity with power meters and predicative analytics to capture greater energy consumption granularity and optimize energy costs. As a result, the company has been able to reduce energy use by 26%, net CO2 by 30%, and water use by 20%. Based on that progress, the Schneider Electric factory was selected by WEF in 2021 as one of only three facilities in the world to be named a “Sustainability Lighthouse.”
“It’s a testament to the work we’ve been doing in Lexington, and a reflection of the broader Schneider mission,” said Luke Durcan, Schneider Electric’s director of the company’s EcoStruxure platform. “We have been on the decarbonization sustainability path for many years.”
Decarbonization is part of the company’s commitment to Sustainable Development Goals (SDGs), a universal call to action by the United Nations which outlines a collection of 17 interlinked global goals designed to be a "blueprint to achieve a better and more sustainable future for all." Schneider Electric is engaged in efforts to accomplish all 17 SDGs, as well as five sustainability megatrends related to climate, the circular economy, ethics, health and equity, and development.
For its core business, Schneider is transitioning to more electric, digital, decarbonized, and decentralized energy. The company notes that it is committed to carbon neutrality at its sites and in its ecosystem by 2030. “As a manufacturer of things, this is aggressive,” Durcan said.
就像施耐德电气对可持续性的行动一样,越来越多的公司也遵循类似的道路。根据一份关于可持续运营的Capgemini研究机构报告,在接受调查的960名高管中,有91%的人旨在实现100%可再生电力,而87%的人计划到2040年碳中性。
Achieving this, however, takes intent and technology. “We have a decarbonization pathway which is a four-stage, 12-point plan to understand the baseline and set targets,” Durcan said. And Schneider Electric uses some of its own technology to understand the actual base level in the plant. This technology includes its PowerLogic power meters, the EcoStruxure Power Monitoring Expert energy visualization and analysis tools that collect metering and machine data at the control layer, and Aveva Insight—a cloud platform that uses artificial intelligence to create actionable information to improve asset reliability and operational performance from enterprise systems, MES (manufacturing execution systems), time series, and non-sequential energy data.
Schneider Electric says its manufacturing customers are using the same technologies for their own sustainability initiatives. “To say there’s been an explosion in the last 12 months is an understatement,” Durcan said. “There’s been a seismic shift in people’s decarbonization efforts.”
But this move to energy efficiency and carbon neutrality does not come naturally, and manufacturers need a lot of help when it comes to getting started.
放开蒸汽
一个普遍的问题是:“我从哪里开始?”一个普遍的答案是:“首先要评估最大的努力,” Nathan Hedrick说。Endress+Hauser. “Typically, I find that some of the biggest energy consumers are compressed air and steam where small changes can lead to big savings.”
实际上,行业专家一致认为,蒸汽,压缩空气和机电系统是浪费能量的最大罪魁祸首。幸运的是,只要您首先在这些领域中测量能源使用,就存在相对容易的修复。
Endress+Hauser makes field instruments to measure and monitor the flow, level, pressure, and temperature of liquids. “These instruments are the eyes and ears into the process and are important to sustainability efforts because they can generate baselines that can be monitored, measured, and reported on to see trends,” said Mark Thomas, Endress+Hauser’s industry marketing group manager.
Sean Silvey, product application specialist withFluke Corp., a supplier of electrical test and measurement tools, agrees that an energy assessment is a good first step. “But in energy, there isn’t a body of research for an industrial plant manager to use to set baselines for what ‘reasonable’ energy usage looks like in a manufacturing facility. So how do you assess what portion of current energy usage is reasonable and what is wasteful? Or, of that wasteful portion, what provides high enough ROI (return on investment) to address? The ROI under discussion here is the cost per kilowatt hour as charged by the utility.”
侥幸的电能质量和能量分析器的麻烦shoot power quality issues and discover the cost of wasted energy. Multiple parameters are measured simultaneously and displayed in formats that quickly describe overall power quality health. And understanding energy waste points is key. “Every system and operation has the potential to be a point of waste that can be mitigated or remedied,” Silvey said. “The goal is to map the energy use of specific equipment and processes to look at where energy is being wasted to quantify the waste and prioritize improvements or replacements based on life of the equipment, as well as which modifications can deliver the best return on investment.”
Silvey’s “energy efficiency checklist” starts with a profile of energy use and then traces the energy consumption to understand energy waste points. He warns that manufacturers should not try to manage every kilowatt consumed by the facility, but instead divide the facility by electrical infrastructure and key systems. “The understanding of basic energy components enables an electrician to set up energy logging equipment to measure overall levels and quality of consumption and then trace when energy is consumed by what. The biggest power savings come from determining when power usage peaks, evaluating overall power consumption compared to utility invoices, and possibly rebalancing loads.”
By power logging each major system and mapping those costs against utility bills to quantify where and when consumption occurs, companies can often realize savings by simple operational and schedule changes, Silvey said.
Measuring for more output
There are other ways to measure energy use beyond checking the utility bill, and it starts with collecting the data from an energy meter connected to an equipment component—a conveyor or a pump, for example—and putting it into a historian as a way to maintain the history of the equipment to look for optimizations. “As you monitor it over time, using a dashboard, you then have a data set and can use analytics to get efficiency,” said Gimmi Filice, senior product manager at GE Digital.
In addition to historians, MES software can be tied to facility management software to determine when different lines are idle and can be powered down. A large automotive manufacturer using GE Digital’s Proficy MES software saved 10-15% on energy usage just by looking at what lines were not running during certain hours in the evening, dimming the lights, and shutting off high energy equipment, Filice said.
Other customers are taking digital transformation tools to another level, like using artificial intelligence and digital twin technology to make predictions of how equipment will perform. According to GE Digital, a steel, chemicals, and cement conglomerate in Southwest China turned to Proficy CSense (analytics software that improves asset performance using a process digital twin) to optimize control of its energy-intensive cement cooler process. By analyzing the data, new insights were gained about variation in the cement cooler’s performance. A digital twin model enabled them to predict how process input changes would affect the cement cooler’s performance.
虽然看的一部分数据可能帮助调整a machine or a line, it does not provide the holistic view needed to truly optimize energy use. “I’ve often found that our own instrumentation has a lot more unlocked potential in the form of unused data that users do not fully leverage to their benefit,” said Endress+Hauser’s Hedrick.
That is where new kinds of manufacturing data-capturing technologies are coming into play. An example being Sight Machine, a platform that converts unstructured plant data into a standardized data foundation.
“A manufacturer should know how many units it’s producing and how much energy it’s using, but they need to dial down to see where it’s being used to get to the level of not just plant or line efficiency, but asset efficiency,” said Matt Smith, senior vice president, digital transformation for Sight Machine.
Sight Machine features tools, called “cookbooks,” that contain recipes for products. Using this information, Sight Machine can determine the most efficient way to make these products using statistical weighing. “Cookbooks look through all of the historical data and, based on conditions—be it humidity, raw materials, etc.—give you your best set of running conditions using as little water as possible, for example,” says Smith.
施耐德电气公司(Schneider Electric)的杜尔坎(Durcan)同意,不仅在工厂水平,而且在产品水平上跟踪资源和能源使用的能力很重要。例如,列克星敦工厂是一个大容量的低混合设施,当您每天以相同的方式生产产品时,管理资源很简单。但这很少是这种情况。“您需要将资源与流过设施的实际产品相关联。我们不仅必须考虑工厂每周或每年的工作,还要考虑如何优化它们。”他说。
That means broadening the scope beyond what is happening in the plant to include the extended supply chain. It can be difficult to collect all that data, but it is an important aspect of measuring energy use. “In the past we’d go to the ERP system to see what standard and variable costs were and see where it is cheaper to produce product, which was all based on cost. Now, we are genuinely looking at our supply chain based on carbon and resources, and that is a different proposition,” Durcan said. “Cost is not a reflection of carbon and energy produced.”
理解能源使用的方面有很多方面,并且没有一种方法适用于所有情况。为了解决这个问题,许多制造技术供应商,例如Schneider Electric,已经成立了咨询小组,以帮助公司建立基准和测量。但是要成功,需要“战略性公司意图”。“每个人都在旅途中的不同时刻;确保您对目标的最初是战略性。”Fluke的三相动力质量分析仪捕获了数百个电源质量参数,以确保永远不会错过关键的电力质量事件。